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Abstract

Understanding biomolecular interactions is fundamental to advancing fields like drug discovery
and protein design. In this paper, we introduce Boltz-1, an open-source deep learning model
incorporating innovations in model architecture, speed optimization, and data processing achieving
AlphaFold3-level accuracy in predicting the 3D structures of biomolecular complexes. Boltz-1
demonstrates a performance on-par with state-of-the-art commercial models on a range of diverse
benchmarks, setting a new benchmark for commercially accessible tools in structural biology. By
releasing the training and inference code, model weights, datasets, and benchmarks under the MIT
open license, we aim to foster global collaboration, accelerate discoveries, and provide a robust
platform for advancing biomolecular modeling.
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Figure 1: Example predictions of Boltz-1 on targets from the test set.

1 Overview

Biomolecular interactions drive almost all biological mechanisms, and our ability to understand these
interactions guides the development of new therapeutics and the discovery of disease drivers. In 2020,
AlphaFold2 [Jumper et al., 2021] demonstrated that deep learning models can reach experimental
accuracy for single-chain protein structure prediction on a large class of protein sequences. However,
a critical question about modeling biomolecular complexes in 3D space remained open.

In the past few years, the research community has made significant progress toward solving this piv-
otal problem. In particular, the use of deep generative models has proven to be effective in modeling
the interaction between different biomolecules with DiffDock [Corso et al., 2022] showing signifi-
cant improvements over traditional molecular docking approaches and, most recently, AlphaFold3
[Abramson et al., 2024] reaching unprecedented accuracy in the prediction of arbitrary biomolecular
complexes.

In this manuscript, we present Boltz-1, the first fully commercially accessible open-source model
reaching AlphaFold3 reported levels of accuracy. By making the training and inference code, model
weights, datasets, and benchmarks freely available under the MIT license, we aim to empower re-
searchers, developers, and organizations around the world to experiment, validate, and innovate with
Boltz-1. At a high level, Boltz-1 follows the general framework and architecture presented by
Abramson et al. [2024], but it also presents several innovations which include:

1. New algorithms to more efficiently and robustly pair MSAs, crop structure at training time, and
condition predictions on user-defined binding pockets;

2. Changes to the flow of the representations in the architecture and the diffusion training and
inference procedures;

3. Revision of the confidence model both in terms of architectural components as well as the framing
of the task as a fine-tuning of the model’s trunk layers.

In the following sections, we detail these changes as well as benchmark the performance of Boltz-1
with other publicly available models. Our experimental results show that Boltz-1 delivers perfor-
mance on par with the state-of-the-art commercial models on a wide range of structures and metrics.

Given the dynamic nature of this open-source project, this manuscript and its linked GitHub reposi-
tory1 will be regularly updated with improvements from our core team and the community. We aspire
for this project and its associated codebase to serve as a catalyst for advancing our understanding of
biomolecular interactions and a driver for the design of novel biomolecules.

1https://github.com/jwohlwend/boltz
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2 Data pipeline

Boltz-1 operates on proteins represented by their amino acid sequence, ligands represented by their
smiles strings (and covalent bonds), and nucleic acids represented by their genomic sequence. This
input is then augmented by adding multiple sequence alignment (MSA) and predicted molecular con-
formations. Unlike AlphaFold3, we do not include input templates, due to their limited impact on
the performance of large models.

In this section, we first outline how the structural training data, as well as the MSA and conformer,
were obtained and describe the curation of our validation and test sets. Then, we describe three
important algorithmic developments applied to data curation and augmentation that we find to be
critical:

1. A new algorithm to pair MSAs for multimeric protein complexes from taxonomy information
(2.3)

2. A unified cropping algorithm that combines the spatial and contiguous cropping strategies used
in previous work (2.4)

3. A robust pocket-conditioning algorithm tailored to common use cases (2.5)

2.1 Data source and processing

PDB structural data For training we use all PDB structures [Berman et al., 2000] released before
2021-09-30 (same training cut-off date as AlphaFold3) and with a resolution of at least 9Å. We
parse the Biological Assembly 1 from these structures from their mmCIF file. For each polymer chain,
we use the reference sequence and align it to the residues available in the structure. For ligands, we
use the CCD dictionary to create the conformers and to match atoms from the structure. We remove
leaving atoms when (1) the ligand is covalently bound and (2) that atom does not appear in the PDB
structure. Finally, we follow the same process as AlphaFold3 for data cleaning, which includes the
ligand exclusion list, the minimum number of resolved residues, and the removal of clashing chains.

MSA and molecular conformers We construct MSAs for the full PDB data using the colabfold search

tool [Mirdita et al., 2022] (which leverages MMseqs2 [Steinegger and Söding, 2017]), using default pa-
rameters (versions: uniref30 2302, colabfold envdb 202108). We then assign taxonomy labels to
all UniRef sequences using the taxonomy annotation provided by UniProt [Consortium, 2015]. For the
initial molecular conformers that are provided to the model, we pre-compute a single conformer for all
CCD codes using the RDKit’s ETKDGv3 [Wang et al., 2022].

Structure prediction training pipeline We train the structure prediction model (see Section 3.2
for details of the confidence model training) for a total of 68k steps with a batch size of 128. During
the first 53k iterations, we use a crop size of 384 tokens and 3456 atoms and draw structures equally
from the PDB dataset and the OpenFold distillation dataset (approximately 270K structures, using the
MSAs they provided) [Ahdritz et al., 2024]. For the last 15k iterations, we only sampled from the PDB
structures and had a crop size of 512 tokens and 4608 atoms. As a comparison AlphaFol3 trained a
similar architecture for nearly 150k steps with a batch size of 256, which required approximately four
times the computing time. We attribute some of this drastic reduction to the various innovations we
detail in the remainder of this section and the next.

2.2 Validation and test sets curation

To address the absence of a standardized benchmark for all-atom structures, we are releasing a new
PDB split designed to help the community converge on reliable and consistent benchmarks for all-atom
structure prediction tasks.

Our training, validation and test splitting strategy largely follows Abramson et al. [2024]. We first
cluster the protein sequences in PDB by sequence identity with the command mmseqs easy-cluster
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... --min-seq-id 0.4 [Hauser et al., 2016]. Then, we select all structures in PDB satisfying the
following filters:

1. Initial release date is before 2021-09-30 (exclusive) and 2023-01-13 (inclusive).

2. Resolution is below 4.5Å.

3. All the protein sequences of the chains are not present in any training set clusters (i.e. before
2021-09-30).

4. Either no small-molecule is present, or at least one of the small-molecules exhibits a Tanimoto
similarity of 0.8 or less to any small-molecule in the training set. Here, a small-molecule is defined
as any non-polymer entity containing more than one heavy atom and not included in the ligand
exclusion list.

This yields 1728 structures, which we further refine through the following steps:

1. Retaining all the structures containing RNA or DNA entities. (126 structures)

2. Iteratively adding structures containing small-molecules or ions under the condition that all their
protein chains belong to new unseen clusters (330 additional structures)

3. Iteratively adding multimeric structures under the condition that all the protein chains belong
to new unseen clusters. These are further filtered by randomly keeping only 50% of the passing
structures. (231 additional structures)

4. Iteratively adding monomers under the condition that their chain belongs to a new unseen
cluster. These are further randomly filtered out by keeping only 30% of the passing structures.
(57 additional structures)

This results in a total of 744 structures. Finally, we retain the structures with at most 1024 residues
in the valid protein/RNA/DNA chains, finishing with a total of 553 validation set structures.

The test set is created using the same procedure described above with the following differences: for
protein and ligand similarity exclusion we consider all structures released before 2023-01-13 (which
include all training and validation sets), we filter to structures released after 2023-01-13 and the final
size filter to structures between 100 and 2000 total residues. The resulting final test set size is 593.

2.3 Dense MSA pairing algorithm

Multiple sequence alignments uncover amino acids that co-evolved throughout evolution, and therefore
are likely close to each other in physical space. However, extracting such signals for protein-protein
interactions poses a greater challenge, as most proteins are sequenced or reported individually. To
approximate these pairings, researchers have leveraged the taxonomy information frequently associated
with sequences. In Algorithm 1, we present a method for pairing MSAs using taxonomy in a manner
that preserves MSA density (a critical factor, as model complexity scales linearly with the number of
MSA rows) while balancing the trade-off between the signal derived from paired sequences and the
sequence redundancy within each chain.

2.4 Unified cropping algorithm

In order to efficiently train on complexes with variable size, methods like AlphaFold2 and Al-
phaFold3 crop the structures during training to a fixed maximum number of atoms, residues, or
tokens. The most common techniques to perform such crops are (1) contiguous, where tokens are
chosen to be consecutive residues in a biomolecular sequence (or entire molecules), and (2) spatial
crops, where tokens are chosen purely depending on their distance from a center token. Each of these
two has its advantages and provides different training signals to the models, therefore they are often
used in combination as done, for example, by Abramson et al. [2024].
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We argue, however, that these are two extremes and it is useful to train the model on a more diverse
range of cropping strategies. To this end, we define a new cropping algorithm which directly interpo-
lates between spatial and contiguous strategies. The algorithm, formalized in Algorithm 2, revolves
around the definition of neighborhoods, that characterize contiguous portions of sequences of a partic-
ular length (or entire non-polymer entities) around a specific token. Neighborhoods are incrementally
added to the crop depending on the distance of their central token from the chosen center of the crop.
If the size of the neighborhoods is chosen to be zero, this strategy translates into spatial cropping,
whereas if the size is half of the maximum token budget, this strategy translates into continuous crop-
ping. In our experiments, we find it beneficial to randomly sample the neighborhood size uniformly
between zero and 40 tokens for every training sample.

2.5 Robust pocket-conditioning

In many real-world scenarios, researchers have prior knowledge of the protein’s binding pocket. There-
fore, it is valuable to enable the model to condition on the pocket information. AlphaFold3 explored
pocket-conditioned generation by fine-tuning the model to include an additional token feature for all
the pocket-ligand pairs, where the pocket is defined as any residue with heavy atoms within 6Å of the
ligand. While effective, this design has some limitations. It requires maintaining two models, one with
and one without pocket conditioning, and it assumes the specification of all residues within 6Å. This
assumption may not align with realistic scenarios, where users might only know key residues, and the
full set of interacting residues is highly dependent on the ligand pose, which is often unknown.

To address these challenges, we implement a different strategy for pocket conditioning, designed to (1)
retain a single unified model, (2) ensure robustness to a partial specification of interacting residues, and
(3) enable interaction site specification for polymer binders such as proteins or nucleic acids. During
training, we incorporate pocket information for a randomly selected binder in 30% of iterations. For
these cases, we draw the (maximum) number of pocket residues to reveal from a geometric distribution
and randomly select residues from those with at least one heavy atom within 6Å of the binder. This
information is then encoded as an additional one-hot token feature provided to the model. The training
process for this pocket-conditioning approach is described in detail in Algorithm 3.

3 Modeling

For the model architecture and training, we started by reproducing AlphaFold3 as described in the
supplementary material of Abramson et al. [2024]. AlphaFold3 is a diffusion model that uses a
multi-resolution transformer-based model for the denoising of atom coordinates. The model operates
at two levels of resolution: heavy atoms and tokens. Tokens are defined as amino acids for protein
chains, nucleic acid bases for RNA and DNA, and individual heavy atoms for other molecules and
modified residues or bases.

On top of the denoising transformer, critically, AlphaFold3 also employs a central trunk architecture
that is used to initialize tokens’ representations and determine the denoising transformer’s attention
pair bias. This trunk is computationally expensive due to its use of token pairs as fundamental “com-
putational token” and its axial attention operations on these pair representations which results in a
complexity that scales cubically with the number of input tokens. To make such encoding computa-
tionally tractable, the trunk is set to be independent of the specific diffusion time or input structure
such that it can be run only once per complex.

Starting from this architecture, we designed and tested a number of potential alternative approaches.
In the following sections, we describe the ones that yielded improvements and were therefore adopted
into Boltz-1.2 Because of the significant computational budget required to train a full-sized model,
we tested these changes on a smaller-sized architecture at different points of our development process.
We expect our observations to hold for the final full-size model, but cannot present direct ablation
studies.

2Some of these differences may simply be the result of reporting mistakes in the current version of the original
manuscript from Abramson et al. [2024], as reported .
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Figure 2: 2D representation of the difference between AlphaFold3 reverse diffusion and Boltz-
1 reverse diffusion with our Kapsch interpolation. Colors indicate correspondence between different
points. Even though the prediction of the denoising model is “perfect” according to the aligned MSE
loss, the unaligned interpolation may lead to poor structures fed to the next reverse diffusion step.

3.1 Architectural modifications

MSA module We find it beneficial to reorder the operations performed in the MSAModule (AlphaFold3
Algorithm 8) to better allow the updates on the single and pair representations to feed to one another.
In particular, we change the order3 of its operations from:

OuterProductMean, PairWeightedAveraging, MSATransition, TriangleUpdates, PairTransition

to:

PairWeightedAveraging, MSATransition, OuterProductMean, TriangleUpdates, PairTransition.

Note that OuterProductMean propagates information from the single to the pair representation, so we
now allow the single representations learned in the MSATransition to directly propagate to the pair
representation.

Transformer layer Abramson et al. [2024] presents an unusual order of operations in their DiffusionTransformer
layers where hidden representations are updated as (AlphaFold3 Algorithm 23):

a ← AttentionPairBias(a) + ConditionedTransitionBlock(a).

This has two issues (1) it lacks residual connections that may make backpropagation more complex
and (2) it does not allow for the transformation learned in the AttentionPairBias to be fed in the
ConditionedTransitionBlock at the same block. We found it to be beneficial to apply the following
transformation order:

a ← a + AttentionPairBias(a)

a ← a + ConditionedTransitionBlock(a).

3.2 Training and inference procedures

Kabsch diffusion interpolation A key change between AlphaFold2 and AlphaFold3 was the
non-equivariance of the denoising model of AlphaFold3 (compared to the equivariant IPA-based
structure module of AlphaFold2) to rotations and translations. To encourage the robustness of
the denoising model to such transformations their input is randomly translated and rotated before
the denoising at training and inference times. To further reduce the variance of the denoising loss
with respect to these variations, Abramson et al. [2024] use a rigid alignment between the predicted
denoising coordinates and the true coordinates before computing the MSE loss.

3We note that a similar strategy was also concurrently noticed by https://github.com/Ligo-Biosciences/

AlphaFold3.
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Figure 3: Diagram of the architecture of Boltz-1. The critical difference with AlphaFold3 lies in
the confidence model, which now not only has a PairFormerModule but follows a full trunk composition
and is fed features coming from the denoising model through the recursive updates.

However, we argue that on its own this procedure is theoretically problematic. One can define simple
functions that would achieve zero rigid aligned MSE loss during training, but completely fail to sample
realistic poses at inference time. For example, consider a model trying to fit a given structure with
coordinates x. Let’s assume that for any noised structure within some reasonable noising perturbation
(e.g. ∆ = 10σt), the model always predicts x:

x̂denoised
t = f(x̂noisy

t , t) = f(x ∗R⊤ + T + ϵt, t) =

{
x if ∥ϵt∥ < 10σt,

0 otherwise.

where R and T are respectively a random rotation matrix and a random translation vector, ϵt and σt

represent respectively the random noise and noise standard deviation for some diffusion time t. This
model will have a loss approaching zero during training (one will never sample something beyond 10
standard deviations, and one could make this ∆ arbitrarily large). However, when used at inference
time, this model will consistently go out of distribution (and therefore predict a zero vector). This

is because at low noise levels the interpolation between the current randomly rotated x̂noisy
t and the

predicted x̂denoised
t may lead to a pose x̂t−∆t that is very far from x and will fall beyond the 10σt

mark. Figure 2 shows a graphical representation of this issue.

We overcome this issue by adding a rigid alignment with Kabsch algorithm after every step during the
inference procedure before x̂noisy

t and x̂denoised
t are interpolated (see Figure 2 for a visual explanation).

Informally, our diffusion interpolation operates on the minimal projection between noisy and denoised
structures, guaranteeing, under the assumption of a Dirac distribution, that the interpolated structure
is more similar to the denoised sample than the noisy structure. Empirically, we note that this change
to the reverse diffusion has a bigger effect when training models on subsets of the full data where the
model is more likely to overfit, on the other hand, the final Boltz-1 seems to largely denoising close
to the projection making the Kapsch alignment not critical.

Diffusion loss weighting For the weighting of the diffusion loss we use (t̂2 + σ2
data)/(t̂× σdata)

2 in
line with the EDM framework [Karras et al., 2022], rather than (t̂2+σ2

data)/(t̂+σdata)
2 (AlphaFold3

Section 3.7.1 Eq. 6).
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3.3 Confidence model

AlphaFold3 trains the confidence model alongside the trunk and denoising models while, however,
cutting all the gradients going from the confidence task to the rest of the model. Instead, training
structure prediction and confidence models separately allowed us to disentangle experiments on each
component and make several important improvements to the confidence prediction task.

In AlphaFold3 the architecture of the confidence model is composed of four PairFormer layers that
take as input the final single and pair token representations from the model trunk as well as an encoding
of the token pairwise distances predicted by the reverse diffusion. These four layers are followed by
linear projections trained to predict whether each atom is resolved in the crystal structure, per-atom
LDDT and per-token pair PAE and PDE.

Trunk architecture and initialization We noticed that, at a high level, the input-output compo-
sition of the confidence model is similar to that of the trunk. The trunk also takes as input its own
final representations (through recycling) and outputs expressive representations used by the denoising
model. Therefore, inspired by the way that researchers in the large language model community have
been training reward models by fine-tuning the “trunk” of their pretrained generative models [Tou-
vron et al., 2023], we define the architecture of our confidence model to contain all the components of
the trunk and initialize its representation to the trained trunk weights. Hence, our confidence model
presents an AtomAttentionEncoder, an MSAModule, and a PairFormerModule with 48 layers. In addi-
tion, we still integrate the predicted conformation as an encoding of the pairwise token distance matrix
and decode the confidence with linear layers on the final PairFormer representation.

Diffusion model features We feed to the confidence model not only the representations coming
from the trunk but also a learned aggregation of the final token representation at each reverse diffu-
sion step. These representations are aggregated through the reverse diffusion trajectory with a time-
conditioned recurrent block and then fed concatenated to the trunk token-level features at the start
of the confidence model. We further modify the way that token-level features are fed to the pairwise
representations adding an element-wise multiplication of linearly transformed token-level features.

Overall procedure and training We detail our new full inference procedure in Algorithm 4 and
provide a schematic representation in Figure 3. To train the confidence model we initialize all the
components borrowed by the trunk to the final trunk weights (from the exponentially moving average)
and initialize the weights of all the other components of the network randomly but with zeroed final
layers not to perturb initial rich representation from the pretrained weights.

Note: at the time of the release of the current manuscript, the large version of the confidence model
is finishing training so it is not yet available in our GitHub repository. We will update the repository
with the confidence model as well as the results section in this manuscript in the coming days once
training has converged.

3.4 Optimizations

Below we summarize some computational techniques we use to speed up and/or reduce the memory
consumption of the model. For details on the implementation of each of these, please refer to our code
repository.

Sequence-local atom representation The AtomAttentionEncoder and AtomAttentionDecoder

include a pair-biased transformer on the representations of every atom. In particular, the attention
of these transformers is sequence-local: blocks of 32 atoms only attend to the 128 atoms that are
closest to them in sequence space. We developed a GPU-efficient implementation of the sequence-local
attention precomputing a mapping (performed in blocks of 16 tokens) to the key and query sequence
embeddings for each 32 key tokens block. The attention is then performed in parallel in each 32x128
block achieving a block sparse attention with dense matrices.
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Attention bias sharing and caching At a high level the denoising model must be run repeatedly
for every diffusion timestep for every separate sample we take, while the trunk can be run once and
its representation fed to all those denoising model passes.

The most expensive components of the denoising model are represented by the computation of the
attention pair bias for the token and atom transformers. However, by examining their computa-
tional graph, we find that these elements do not depend either on the particular input structure
given to the denoising model or the diffusion timestep. In particular, these elements are: the at-
tention bias of all the transformer layers in the AtomAttentionEncoder, AtomAttentionDecoder,
and DiffusionTransformer, and the intermediate single and pairwise atom representations of the
AtomAttentionEncoder. Therefore, we can also run these components once and share them across all
the samples and the entirety of the reverse diffusion trajectory, significantly reducing the computational
cost of the reverse diffusion at the cost of storing these representations and biases in memory.

Greedy symmetry correction During validation and confidence model training, the optimal align-
ment between the ground truth and predicted structure must be determined, accounting for permu-
tations in the order of identical chains or symmetric atoms within those chains. Because the number
of possible perturbations grows exponentially with the size of the complex, considering all of them is
computationally unfeasible.

We devise the following procedure to perform an approximate, yet effective, atom matching. This
operates in a hierarchical way searching (1) the optimal assignment of chains, and, then, (2) assuming
chain assignment, to select atom perturbations greedily for every ligand or residue. For the first,
for each symmetric chain, we compute the resulting global LDDT without changing any inner atom
assignment. For the second step, iteratively for every ligand, amino acid, or nucleotide basis (one at a
time), we find the perturbation of that ligand the most improves the global LDDT and greedily apply
it.

Note that because the LDDT between pairs of elements that were not affected by the perturbation does
not change, one can implement the test in the last step very efficiently only looking at the specific rows
and columns of the distance matrix that change. In practice, we limit the number of perturbations of
the chain assignment we consider to 100 and the perturbations of the atoms of each ligand to 1000.

4 Results

We evaluate the performance of the model on two benchmarks: the diverse test set of recent PDB
structures that we cured as discussed in Section 2.2, and CASP15, the last community-wide protein
structure prediction competition where for the first time RNA and ligand structures were also evaluated
[Das et al., 2023, Robin et al., 2023]. Both these benchmarks contain a very diverse set of structures
including protein complexes, nucleic acids, and small-molecule, making them great testbeds for the
assessment of models, such as Boltz-1, capable of predicting the structure of arbitrary biomolecules.

Benchmarks For CASP15, we extract all the competition targets with the following filters: (1) they
were not canceled from the competition, (2) they have an associated PDB id to obtain the ground truth
crystal structure, (3) the number of chains in the stochiometry information matches the number of
provided chains, (4) the total number of residues with below 2000. This leaves a total of 76 structures.
For our test set, we remove structures with covalently bounded ligands because the current version
of the Chai-1 public repository does not provide a way to set these. Finally, for both datasets, we
remove structures that go out of memory for either of the two methods on A100 80GB GPUs. After
these steps, we are left to evaluate 72 structures for CASP15 and 520 structures for the test set.

Baselines We evaluate our performance against Chai-1 [Chai et al., 2024], the first replication of
AlphaFold3 that was recently released under an exclusive commercial license and has been shown
to match AlphaFold3 results across several benchmarks. At the time of writing this manuscript,
AlphaFold3 inference code has just been released, we have requested but not yet received the model
weights. We ran the Chai-1 model using the chai lab package version 0.2.1. The model was run
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Figure 4: Visual summary of the performance of Chai-1 and Boltz-1 on the CASP15 benchmark
and the test set.

with 200 sampling steps and 10 recycling rounds, and producing 5 outputs, matching our model. We
also used the same pre-computed MSA’s up to 16384 sequences. Since Chai-1 requires annotating
the source of the sequences, we annotated all Uniref sequences with the uniref90 label and all other
sequences with the bfd uniclust label. We briefly experimented with alternative labelings but did
not find these to impact the model substantially.

Evaluation criteria We consider several well-established metrics to evaluate the performance of the
models on these very diverse sets of biomolecules and structures. In particular, we compute:

1. The median all-atom LDDT: measuring accuracy of local structures across all biomolecules;

2. The median TM-score: measuring global structure quality;

3. The average DockQ success rates, i.e. the proportion of predictions with DockQ > 0.23, which
measures the number of good protein-protein interactions predicted;

4. The median protein-ligand interface LDDT: measuring the quality of the ligand and pocket
predicted interactions, official CASP15 metric to evaluate the ligand category;

5. The proportion of ligands with a pocket-aligned RMSD below 2Å: a widely adopted measure of
molecular docking accuracy.

All metrics were computed using OpenStructure [Biasini et al., 2013]. LDDT-PLI, DockQ and ligand
RMSD success rates are computed over all the different protein-protein and protein-ligand interfaces.
Following a similar format to that used in CASP and to allow a fair comparison of the methods, we
run both Chai-1 and Boltz-1 to generate 5 samples and evaluate the top prediction out of the 5 for
every metric.
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BOLTZ-1 prediction on PDB structure 8BID BOLTZ-1 prediction on PDB structure 8JFU

Figure 5: Examples of Boltz-1 predicting chains overlapped on top of one another. On structure
8BID Boltz-1 predicts two pairs of protein chains almost completely overlapped with one another,
while on structure 8JFU two pairs of two DNA chains are overlapped.

Results We report the performance of Chai-1 and Boltz-1 in Figure 4. The models show compa-
rable results in terms of median LDDT and median TM scores across both CASP15 and the test set,
indicating similar accuracy in predicting general biomolecular structures. A similar trend is observed
specifically for CASP15 RNA targets, where Chai-1 achieves a median LDDT of 0.41 and a median
TM score of 0.31, compared to Boltz-1’s 0.54 and 0.31, respectively.

For protein-protein interactions, the performance of both methods is also aligned. Chai-1 slightly
outperforms Boltz-1 on the test set, while Boltz-1 performs better on CASP15. In the protein-ligand
metrics, the two models achieve comparable results on the test set, butBoltz-1 demonstrates a notable
advantage on CASP15. This is particularly encouraging given that CASP15 is widely regarded as a
challenging dataset for protein-ligand prediction methods [Morehead et al., 2024], owing to its demand
for generalization and the modeling of multiple interacting ligands across many targets. However, it
is important to note that CASP15 includes only 15 ligand-related targets, encompassing 58 ligands
in total, which may limit the robustness of these findings in demonstrating a definitive performance
improvement for Boltz-1. Finally, we present in Figure 1 two examples of hard targets from the test
set where Boltz-1 performed remarkably well with TM scores above 90%.

5 Limitations

A visual inspection of several predictions from Boltz-1 revealed instances of hallucinations in the
model’s outputs. The most prominent type of hallucination involved the placement of entire chains
directly on top of one another. These occurrences exhibited two common patterns: the first involved
identical polymer chains in large complexes (examples are shown in Figure 5), while the second involved
similar ligands that shared a common substructure.

We propose several hypotheses to explain these patterns:

1. Overlapping chains and ligands in the data: Although our data processing pipeline removed
overlapping polymer chains, we did not eliminate overlapping ligands. Upon closer inspection,
we found that several examples in the PDB database report overlapping ligands within the
same structure, potentially to represent alternative binding molecules or reactions (e.g., PDB ID
7X9K). Such structures in the training set likely introduce misleading learning signals.

2. Insufficient training crop sizes: Due to computational limitations, we trained the model using
crop sizes of 384 and 512 tokens, which are significantly smaller than many of the complex
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structures where these issues were observed. This likely hindered the model’s ability to capture
sufficient spatial context during training.

We leave further exploration of alternative training or fine-tuning strategies to mitigate these issues to
future iterations of the model. By making the model and its code openly available, we hope to inspire
the community to investigate additional limitations and propose innovative solutions to enhance its
performance.

6 Conclusion

We introduced Boltz-1, the first fully commercially accessible open-source model to achieve Al-
phaFold3-level accuracy in predicting the 3D structures of biomolecular complexes. To accomplish
this, we replicated and expanded upon the AlphaFold3 technical report, incorporating several in-
novations in architecture, data curation, training, and inference processes. We empirically validated
Boltz-1 against Chai-1, the current state-of-the-art structure prediction method, demonstrating
comparable performance on both a diverse test set and the CASP15 benchmark.

The open-source release of Boltz-1 represents a significant step forward in democratizing access to
advanced biomolecular modeling tools. By freely providing the training and inference code, model
weights, and datasets under the MIT license, we aim to enable researchers and organizations to experi-
ment and innovate using Boltz-1. We envision Boltz-1 as a foundational platform for researchers to
build upon, fostering collaboration to advance our collective understanding of biomolecular interactions
and accelerating breakthroughs in drug design, structural biology, and beyond.
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Algorithm 1: Dense MSA Pairing

Input: query complex C = [(sequence, chain id), ...]

Input: unpaired MSAs M = [(sequence, chain id, taxonomy id), ...]

// Add original sequence

orig pairing, orig is paired = {}, {}
for (sequence, chain id) in C do

orig pairing[chain id] = sequence

orig is paired[chain id] = 1

end
pairing, is paired = [orig pairing], [orig is paired]

// Sort and filter taxonomies

Group entries in M by taxonomy id

Sort taxonomies by the number of unique chain id in its entries (descending)
Filter all taxonomies equal to null or with a single unique chain id in its entries
Store all entries outside the new taxonomy list in an available queue grouped by chain id

// Add paired MSAs

for taxonomy id in taxonomies do
Group taxonomy id entries by chain id

for i = 0 to the maximum number of entries per chain id do
row pairing, row is paired = {}, {}
// Add the chains present in the taxonomy

for (chain id, sequences) in taxonomy id entries do
row pairing[chain id] = sequences[i mod len(sequences)]

row is paired[chain id] = 1

end
// Fill any missing chains with unpaired MSAs

for chain id in orig pairing but not row pairing do
row pairing[chain id] = available[chain id].pop(default=empty)

row is paired[chain id] = 0

end
Append row pairing to pairing

Append row is paired to is paired

Break if we have finished the rows
end

end
// Fill MSA with remaining unpaired MSAs

while MSA not fill and available is not empty do
row pairing, row is paired = {}, {}
for chain id in orig pairing do

row pairing[chain id] = available[chain id].pop(default=empty)

row is paired[chain id] = 0

end
Append row pairing to pairing

Append row is paired to is paired

end
Output: pairing, is paired
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Algorithm 2: Unified Cropping

Input: max tokens, max atoms and neighborhood sizes = [0, 2, ..., 40]

Input: Token list tokens and sampled chain id or interface id

Sample neighborhood size uniformly at random from neighborhood sizes.
Sample center token uniformly within the tokens in the chain chain id or interface
interface id.

Sort tokens by ascending the distance of their center atom to that of center token.
Let cropped tokens be an empty set
for token in tokens do

Let chain tokens be the entries in tokens with the same asym id of token.
if len(chain tokens) ≤ neighborhood size then

selected tokens = chain tokens

else
Let selected tokens be the entries in chain tokens with the same res idx of token.
// Expand the neighborhood until we have enough tokens.

min idx = max idx = token["res idx"]

while len(selected tokens) < neighborhood size do
min idx = min idx - 1

max idx = max idx + 1

Let selected tokens be the entries in chain tokens with res idx ∈ [min idx,

max id].
end

end
// Compute new tokens and new atoms.

Let new tokens be the entries in selected tokens not present in cropped tokens.
if adding new tokens to cropped tokens would exceed max tokens or max atoms limits
then

Break the for loop
else

Add new tokens to cropped tokens.
end

end
Output: cropped tokens
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Algorithm 3: Robust pocket-conditioning

// Pocket featurization step at training time

Input: pocket conditioned prop = 0.3, pocket cutoff = 6Å, pocket geometric p = 0.3

Input: tokens: list of cropped tokens
for token in tokens do

token["pocket feature"] = "UNSPECIFIED"

end
if r U [0, 1], r < pocket conditioned prop then

// Choose as binder a random ligand in the crop, if there are no ligands select a chain

Let binder asym ids be the list of all unique ligand asym id.
If binder asym ids is empty make it all unique asym id.
Select binder asym id randomly from binder asym ids.
For all tokens find the shortest distance of any of its resolved atoms to a resolved atom
with binder asym id.
Let pocket tokens be all the tokens with asym id different from binder asym id and the
shortest distance below pocket cutoff.
if pocket tokens is not empty then

N = min(len(pocket tokens), 1 + M) where
P (M = k) = (1− pocket geometric p)k−1 ∗ pocket geometric p

Sample N tokens from pocket tokens to form subset pocket tokens

for token in tokens do
if token["asym id"] equals binder asym id then

token["pocket feature"] = "BINDER"

else if token in subset pocket tokens then
token["pocket feature"] = "POCKET"

else
token["pocket feature"] = "UNSELECTED"

end

end
Output: tokens

15



Algorithm 4: Confidence model

Input: diffusion module activations and timesteps A = [(a1, t1), ... , (aN, tN)]

where N is the number of sampling steps
Input: distogram of the predicted token coordinates Di,j
Input: trunk features s trunk, z trunk

Input: input features feats
// Process diffusion model activations

acc diffusion = 0

for (a, t) in A do
t emb = FourierEmbedding( 1

4log(t/σdata))

t emb = LayerNorm(t emb)

a = LayerNorm(a)

acc diffusion += ConditionedTransitionBlock(a, cat(acc diffusion, t emb))
end
// Initialize single and pair representation

s inputs = InputFeatureEmbedder(feats)

s = LinearNoBias(s inputs)

s += LinearNoBias(LayerNorm(s trunk))

s += LinearNoBias(LayerNorm(acc diffusion))

z = LinearNoBias(s inputs[:, :, None]) + LinearNoBias(s inputs[:, None, :])

z += RelativePositionEncoding(feats)

z += LinearNoBias(feats[token bonds])

z += LinearNoBias(z trunk)

z += LinearNoBias(LinearNoBias(s inputs[:, :, None]) * LinearNoBias(s inputs[:,

None, :]))

z += LinearNoBias(one hot(Di,j))

// Update single and pair representation

z += MSAModule(z, s inputs, feats)

s, z += PairFormerModule(s, z)

s, z = LayerNorm(s), LayerNorm(z)

// Predict confidence metrics

plddt = SoftMax(LayerNoBias(s))

pde = SoftMax(LayerNoBias(z + z⊤))

resolved = SoftMax(LayerNoBias(s))

pae = SoftMax(LayerNoBias(z))

Output: plddt, pde, resolved, pae
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